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Challenge: Al models require expensive hardware

These are inaccessible to many potential Al users in
biodiversity
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Increased efficiency reduces cost




MegaDetector is used to process data for NGOs
and conservation organizations globally
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Seeing biodiversity: perspectives in machine learning for wildlife conservation, Tuia*, Kellenberger*, Beery*, Costelloe*, et al., Nature
Communications (to appear)



Bandwidth is limited in the field
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Commercial edge-based Al camera traps in development
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Sonar deployment to monitor salmon returns
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We need near-real-time counts from remote field sites




We need near-real-time counts from remote field sites
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This requires edge-based models that are robust anc
reliable even as environmental conditions change




iNaturalist

www.inaturalist.org

iNaturalist is a joint initiative of the
California Academy of Sciences and the
National Geographic Society.
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Real-time, on-device fine grained categorization
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Training efficiency

e Fine tuning often decreases training time, and thus
Ccosts

e Reducing sample overlap or removing noisy training
data can reduce training costs without impacting
performance, or sometimes improving performance
(Coresets, DataComp)

e Smaller models train faster



Training on the edge

e Power
e Hardware

e Bandwidth
e \erification




Evaluation efficiency

e |nexpensive proxy tests (ie brightness)
e Small (but representative) test sets

e Striation and multiple metrics

o Make the most of your inference calls
e Active testing (soon!)



Quantization and Pruning

Inference efficiency

e Quantization

e Pruning f
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We can quickly compress large generalist models into
accurate and efficient specialists

1

TACO r

Institute of

- k.
[ § )
A "
L

: Sparse Specialist Techmology
Large:Cenerallsy Calibration Set Model o
Model Skoltech

ooooooooooooooooooooooooooooooooooooooo

Vision Models Can Be Efficiently Specialized via Few-Shot Task-Aware Compression, Kuznedelev,.., Beery, Kurtic, Alistarh et al. 2023



Federated learning (S Somamoset)

aggregation & update

e Maintains data

privacy
e Can be efficient [intnsatse 7
W Step 1: Model
at the edge ‘ [ Intitialization ]
e Requires
bandwidth and

synchronization




